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(Moscow)
ABSTRACT 22 Y15
An examination is made of the plane and spatial /889%

problems of unsteady crack propagation in a medium sub-
jected to uniform shear. The plane problem is completely
analogous to the problem of Broberg (Ref.l) regarding a
normal rupture crack, but it is solved by much simpler
methods. The concurrent study of plane and spatial cases
also has the advantage that several of the intermediate
results derived for the plane problem provide a basis Lﬁv
for solving the spatial case. &lp*k
The axisymmetric problem regarding propagation of a
normal rupture crack (the spatial analog of Broberg's
problem) was solved by the author in (Ref. 2). In con-
trast to this problem, the problem to be solved in the
present study will not be axisymmetric, but a generaliza-
tion of the method employed in (Ref. 2) makes it possible
to formulate a precise solution for the problem at hand.
It is thus assumed that the surface of the crack has the
form of a circular disc, i.e., the propagation velocity of
the crack does not depend on direction. It is shown that

the latter assumption cannot, generally speaking, be put into

* Note: Numbers in the margin indicate pagination in the original
foreign text.



effect, but one can formulate an initial stress magni-
tude at which it will be valid. TFor all other values of
initial stress, the solution obtained can be regar-

ded as approximative.

1. Formulation of the Problem

a) Plane Case. A uniform and isotropic elastic medium with
the shear modulus p and with propagation velocities of the longi-
tudinal and transverse waves a and b occupies infinite space. For
t < 0, only one component of the stress tensor 7 ,° = 1° differs

from zero. At the moment of time t = 0, a crack is formed along

the y-axis, which is then propagated in the plane z = 0, so that

the elastic disturbances which are thus formed do not depend on the
coordinates y and are polarized in t The
gation velocity is assumed to be constant, and is designated by a.
The crack location is shown in Figure 1. Tangential stresses must

disappear at the crack surface, i.e., disturbances produced by

development of the crack must satisfy the condition

Ty =—1" for z2=0 [z|<«t
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It can be shown that the displacement vector in the disturbance
must be antisymmetric with respect to the plane z = 0. Thus, the
tangential displacement and normal stressare odd functions of z, and

thus the following boundary conditions hold at z = O:

sz=—1° for z=0, |x|<at
°z=0 for 1=0,—o00 Lz oo (1.1)
u,=10 for =0 lz[>at

Since the crack and the elastic disturbances related to it are
not present for t £ 0, the initial conditions have the form
(u = {ux, uz} - displacement vector)

u=0, u'=v=0 fort=20

The dot employed here designates time derivative.

A condition must be imposed on the solution behavior in the
vicinity of the crack edge, besides the boundary and initial con-
ditions. Just as in the case of a normal rupture crack, we can
assume that the crack edge is surrounded by a region in which plas-
tic deformation of the medium occurs. The dimensions of this region
increase at constant velocity which is proportional to the crack
propagation velocity o, but always remain much smaller than the
dimensions of the crack itself. In this way, this plastic region
can be regarded as infinitely small. Let us also assume that the
work expended on forming the crack is proportional to the volume
of the plastic region, so that the corresponding output can be

written in the form

= 20%C (1.2)
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where C is the constant which is independent of a. This output must
equal the energy flux through the surface surrounding the crack edge and
located at an infinitely small distance from it. We thus obtain the

requisite condition in the form

lim g t,.v dl = aXC

Bao,s (1.3)

The contour lg encompasses one of the crack edges and is
located at the distance 6 from it.

In particular, it follows from (1.3) that the components of
stress and velocity must increase as the crack edge is approached,
as 6~%. It can be readily seen that the components of stress and
velocity are uniform functions of the coordinates and of time
measured from zero. Consequently, close to the crack edge they
are proportional to Vt/s.

In physical terms, it is clear that this plastic region must
reach a certain stationary size in time. Then the right part in
(1.3) becomes constant (and not proportional to time), so that the
stresses in the vicinity of the crack edge must become proportional
to v1/8 in time, and not to /E7§; i.e., the self-similar nature of
the problem must be disturbed or, in other words, the assumption
regarding the uniformity of the crack propagation velocity. Thus,
this formulation of the problem is advantageous only for the ini-

tial period of crack development.

b) Spatial Case. The initial stress state of the medium is the

same as in the plane case, but the crack propagation is now initia-

ted at the origin. It is assumed that the crack propagation velocity



is constant and does not depend on direction, so that the crack
surface is determined by the following relationships for t > O:

vz;= 0, I<r<at
at the cylindrical coordinates r, ¢, z. Just as in the plane case,
we reduce the problem at hand to the boundary problem for half-space
z > 0 with the boundary conditions

Try = — T° €OS @, Tz =T SINQ for 2=0,rlat
U,=0for z=0' 0<r<°°; ur=u,¢'=0;for z=0. r>at (1.4)

and with the initial conditioms
u=20 u'zv=0, fort =0 (1.5)
An additional condition can be written in the form

lim g t.vdS = 2na’eC
80 S.B (1.6)

where SG is the toroidal surface surrounding the crack edge and
located at the distance § from it.

All the statements pertaining to the plane problem remain in
force for the spatial case, but one fact now stands out. Strictly
speaking, condition (1.6) must be formulated for the vicinity of
each point on the crack edge, but it then appears that in
the general case a, which is determined from this condition

depends on direction, i. e., the form of the crack

must differ from a circular form. Unfortunately, at the present

time there is no known method for solving the problem for the case
when the crack edge is an arbitrary curve. Thus, a certain effec-
tive value for the crack propagation velocity is obtained from con-

dition (1.6). It must be pointed out that, although this formulation



of the problem is not valid for determining the form of the crack
edge, its solution must yield a correct description of the elastic
wave fields at large distances from the crack. This is of basic
importance when applying this solution to seismology. The last
part of Section 4 will give a value for initial stress, at which
the crack form will be circular, even if local fulfillment of an
additional condition is required (at this initial stress value, the
integrand in (1.6) does not depend on the angle ¢).

2. Functionally-Invariant Solutions

In both of the formulated problems, the components of the
stress tensor and the velocity vector are uniform functions of the
coordinates and of time measured from zero. This makes it possible
to employ the method of functionally-invariant solutions given by
Smirnov-Sobolevl. If this method is employed, the plane problem
can be readily solved for half-space z > 0 with the displacement
vector polarized in the xz-plane; this solution satisfies the following

condition at the boundary

0, =0 for z=0, —oLrl o0 2.1)

Omiting the details, we can write this solution as follows:

Uy = v = vV 4 O, 22 = Re V, 1 (619)
u, = v, = v, L v, v,012 = Re Vz(l.z) (’0‘1"’) )
o, = g, 4 g, 0,12 = Re 2(11.2) (ﬁ(l.i)) (2.2)
T = T + .2, .1 = Re T,3% (ﬁu.,))

l see Chapter XII, in the Russian translation of the book (Ref. 3).




(1) (2)

Here ¢ and @

are determined from the equations

W =y Wz — ) a0 =0, P =t — BOz—) 5T —OM =0 (2.3)
and the functions in (2.2) under the real part are expressed by

means of a single unknown function V( @) by the relationships

V,‘,‘)’.’ (’0) = 2p%9’ (0) V. 9 (ﬂ) — (1 . 2b2'02) Vv (o) 5(2.4)
v, ay (8) = 2520 Va'” V' (9)
Vz(ﬂ) (0) = — 9 (1 —_— 2b202) (b- . 02)_1/.‘,, (0)

Tx(zl)'(ﬂ) - 4Pb202 Va_z —0V (,0)’ i Tx(zﬁ)' (,ﬂ) - = 4’_‘;.26(?2 1/3b~ 1)3Vr (0)
Y0 = — 2, @0) = — 0 (1 — 2620Y) V' (9) !

One solution of the plane problem, in which the displacement

vector is parallel to the y-axis, is still required to solve the

spatial probiem. This solution is determined by the relatiomnships
uv. = v, = v} (2) v, )] = Re V (6(2))
T = 12, 1,® = Re T,? #?) (2.5) (2.5)
T2 () = — V52—V, ()

Instead of the real parts, one can take the imaginary parts

of the corresponding functions in formulas (2.2) and (2.5).

3. Solution of the Plane Problem

The relationships in the preceding section express the deriva-

tives of the desired functions by the derivative of the function V(9).

Their primatives must be determined so that the initial conditions
are fulfilled. It can be readily seen that integration must be
carried out with respect to the contours shown in Figure 2 in order

to do this, so that
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(1)_____1_ (1)’;" d7u=—'bz'r A2V (A dA
vx 2i x ( ) b ' 8 ( )

(1) 10

1 -1 ,
2 = S V() dh = o S)(l — 2V (M) dA etc.
1(2) 1(2

(3.1)

The initial conditions will be fulfilled, if it is required that
V'(1) be regular for -a~1 < ReX < a~l, and if the radicalsva—2 = A2
and vb~2 - A2 are transformed so that they are positive for X = 0,

carrying out branch cuts from - a~lto - » and from a-! to = along
the real axis.

For z = 0 the functions 0(1) and 3(2) assume the same values

ﬁ(l) = 0(2) = 8 = t/x, and as a result we obtain
1 Corr pnn . R\ ,
22 =§i_§v () dh, T = 2zpb2§_;§—_’-ﬁv (M dh for z =0 (3.2)

where I 1is the contour shown in Figure 3 and

R (») —_ (X’ -1, b2t + A (V a? — M'V bt — )2
Expressions (3.2) must satisfy the conditions (1.1). Analyzing /893
(3.2), and from these conditions as well as the requisite solution

behavior in the vicinity of the crack edge, we obtain

(3.3)
(x2— A)’

’ _ A B
V (A') - (u’”——}\,"‘)'/’ +

Vy=—2 for 0<a<e

o T TRESE g



Here c is the velocity of Rayleigh waves (R(c™2) = 0). In the
case b < a < a it can be stated that there is no solution which has
the requisite order of increase close to the crack edge. It can be
shown that the integral in the right part of (1.3) in the case
c <o <b is negative, i.e., in this case, an additional condition
cannot be fulfilled. From this point on, we shall assume that
a < c. Utilizing (3.3), we obtain the displacement of the crack

boundary from the first expression (3.2):

u, = 0AV & —2?, for :=0, |zl at (3.5)
The second of the relationships (3.2) gives the equation for
determining A. In order to do this, in the case of |9 | < a~! 1let
us deform the contour 7 so that it coincides with the imaginary axis.
This can be done, since the integrand is regular outside of the

-1

branch cuts from * a~! to % « , and decreases rapidly to infinity.
pidly y

Then from (1.1) and (3.2), we have

— 3 T 12—V a T MY I F A A
v = 4pi4 T o

Let us designate the integral in this formula by I(a). We then

have
.ro
A= T (3.6)
imA

4
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Figure 3.



We must now study the solution behavior close to the crack edge
and must fulfill the additional condition (1.3). When the point

(x, 2z) approaches the crack edge, the ends of the contours Z(l) and

Z(Z) approach the point A = a~l (as the right crack edge is approached).

Using the Laplace method, we can readily obtain the first terms of

asymptotic expansions of the velocity and stress components in the
form o
20 = 26% (at / 26)"' Im /¥ (9), o = (a2 — 26%) (a/28)" Im /¥ (y)
' ~2b V I — o4 (ut/28)"Re /¥ (y) -
@, —2h 2)
~ . vz o~ V-mz A (E) f( (‘P)
oy o= 2pat (260 — o) 4 (at / 20)" Im f (y)
| 0" 2= uat (a? — 2b%) A (ot / 28)" Im 1 (y)
o0 e VT =P 4 (at 7 28) Re f¥ (y)

1 — o3 / 2b1)s .
.t'"’:*'@b’—————( 22 A(TS‘)/R 2 ()

ay {=a%3 (3.7)

where 894

|z|;at + dcosp, z=238siny, U (p) = (cos P — isinme:i)J,,
f('«!) W) = (cosy — isin ‘lPV1 azb %) s

We can now readily calculate the limits of the integral in the

left part of (1.3). Employing (3.6), we obtain as a result

16pb? m;)t]r:;“__ atb-8 [(1 _ %:)% (1 - F) *— (1 - ;—;)] = ¢ (3.8)

This equation determines the crack propagation velocity a as

a function of the load t°.

4, Solution of the Spatial Problem

The solution of the spatial problem can be reduced to the
plane problem, by the same method as was employed in the study (Ref.

2) for the axisymmetric problem of a normal rupture crack. The case

10



under consideration differs from the latter, due to the fact that the
problem is not axisymmetric.

Let us introduce the €artesian system of coordinates x, y, z,
which is dependent on the parameter w and which is related to the
basic polar system r, ¢, z by the relationships

z = rcos (p — o), y=rsin(¢—m), zZ=z
and'let us form a superposition of the plane solution of the
following type: ‘

®

u= S [uy (z, 2, £) cos © + u, (z, 2, ¢) sin ] do |

-7

where u;(x, z, t) is determined from (2.2), and uy(x, z, t) - from
(2.5). 1t can be readily seen that the vector obtained satisfies
the equations of motion, the condition

0, =0 fori=00<r<oo
and has the requisite dependence on ¢. Replacing the variable

2= ¢ - w and utilizing the equations (2.2) - (2.5), we obtain

L ==Y 49% 50 =cosg S V0 (6) cos? Q dQ
2% = cosp S V2 (8 cos* Q@ — V, () sin® Q] dQ

T
Uy’ = v = vV + v,?, ve? = — sin ¢ S V.2 @Y sin? Q dQ

-7

'

g

o = —sing { (V.2 (8%)sin® @ — 7, (0) cos? Q1 dQ

T
Uy = v, = 0,0 4 ¥, 2,29 = cos S V9 (900 o5 O aQ-

-n

. T
6 = 6.V + 6,@, 6. = cos @ & 3,09 (") cos Q dQ

-7

) ] (4.1)
Ty = o 4+ 2, M = cos g S .1 (8W) cos? Q dQ

-

11




o = cos @ | (7.9 (07) ot @ — T, (B sin’ Q] dQ

-
T

Tor = Tai! + Tors Ty = —sin @ S T2 (8) sin® Q dQ
1 = — sing S T2 (89) sin? Q — T,2 (8W) cos* Q) dR

-n

(1,2)

In these expressions, the functions @ are determined

€rom the equations

MW=t—9YrcsQ—zya? -9 =0

= t—ﬂm,rcosQ— sz-a.__,a(z):=0

and the functions under the integrals are expressed by the two un-
known functions V(9) and V;(98), according to (2.2) and (2.5). It
can be readily seen that V(9 ) and V;(9) can be regarded as odd
functions of 9, since the components in (4.1) - corresponding to
the odd parts of these functions -~ disappear identically. Let us

use the notation

F@)=v(®), F @)=V

Taking the fact into account that g — §¢® =9 =t¢/rcos Q in

the case of z = 0, we can obtain the following expressions from

(4.1): A
r . ‘ Yo ’ LY oo dv . _ n
T ~Re \[FF O —(1-3)H O w= =
P vo\ v v ’ dv _
—_— Toin g vv=Rel [(1—T)F (V)——TOFI (‘V)]m, v =70
L T BR (V) gy o
pre=r i ,% [Vb"’-—v F ( (4.2)
e b . _ , ;

12



—— 7, = Re S [—4-@)—-(1—%) F'(v) —

Tem e g Y=y
v
—— d
_ ':’,o Vi z_vFl(V)]Wl—-v_o for z = 0

The integration contour Zv is shown in Figure Z. In order to
fulfill the initial conditions, expressions (4.2) must disappear for
vg < a~2. This will be fulfilled, if F'(v) and F;'(v) - which are
regular outside of the branch cut from a~2to « - satisfy the con- 896
dition

F'(0) = — Fy (0) .3

and decrease to infinity more rapidly than v=l. In view of the
boundary conditions, the first two of the expressions in (4.2)
must disappear for vy < o~2. 1In order to do this, F'(v) and F;'(v)

must be regular for Re v < a~2. On the other hand, the last two

expressions in (4.2) must disappear for vy > o~ 2. 1In order to do
this, the integrands must be regular for Re v > vg > a~2. We

find F'(v) and F;'(v) from these conditions and the requisite stress
behavior in the vicinity of the crack edge. It can be shown that,
just as in the plane problem, an additional condition can be ful-

filled only for o < c¢. The functions F'(v) and F;'(v) satisfy the

requisite conditions in the following form:

A
CEE

FF(v=—F'=

Figure 4.
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where A is an indefinite constant.

Similarly to expression (4.2), we can obtain the following for

2= 0:
-—VvocowReS[”%F(*’) — R0
_._VwOMn¢Re§[1 FEO=TRO| o2,

o ——Vvocoswﬂelsv[-v;"—‘;(") -Y60 ] 7=
,_Vv.,smq)neg[ Bem—-F60] = Vv—Vo
where

Fv) = &F' (M dh,  Fy(v) = SFI' Mar, G =p g ._;_bb’_’?_a(_f_); F* () d

Gl(&) ‘ SVb T_AF (7»)4}v

The lower limit here is selected as being equal to zero, in
order that the integrands in (4.4) be regular for v = 0, which is
necessary in order that the initial conditions be fulfilled.

The functions F(v) and Fj(v) can be readily calculated; as a

result, we obtain

F)=—F,() = 5%

-

and from (4.4) we find

ad Az

oM —

asAt
33 __ p2

==—2uco (PV < 2usmq>V for :=0,r<Lat (4.5)

We can transform the expressionsfor G(v) and Gj(v) in the

following way:

T RO ( RO _ .
G(v)-4p,b’§vb F(v)dv+4pb‘%vb_a_vF.(v)d?» M + G* (v)

Voo

Gaw=@Xv@W:Wﬂwww+uSv@?:TAWM&=JL+GfW)

0

~

14



The terms in (4.4), which correspond to G*(v) and G *(v),
disappear for vy > o~%, since the integrands containing these

functions are regular for Re v > vy > o 2. We thus have

Ty = — (M — M)t cos, Tor = (M — M,)Rsing® for z=0, r<dt

Comparing these value with the boundary conditions(1l.4),

we obtain

M—-M)n=r°
or
e _— _ VT . o

We shall designate t-he integral in this equation by I;(c),and

we shall set A; = - A, We then have
4 =iﬁ% | (4.7

Integrating expression (4.5) with respect to time, we now

obtain

u,=2A1acos<me Uy = —2«‘11°‘Sinq’V"Ft—z_::'-'E forz=0,r<a (4,8)
or in Cartesian coordinates,
u, = 204, V a2t* — 12, uy, =0 for z=0,r<a.t (4.9)

Here x = r cos ¢, y = r sin ¢. Thus, the displacement
direction of the crack edges coincides with the direction of ini-
tial stress.

Using the method described in the work (Ref. 2), we can
obtain the asymptotic expressions for velocity and stress close to

the crack edge

15



v, M = 28%4  cos @ (2at / 8)” Im fV (),
2,® = (a2 — 2b%) 4, cosg (20t / 8)# Im F® ()
. 1V =0(1), o~ —a2d;sing 20t/ 6)" Im f? ()
vV =20V T = a2a 24, cosg (2at/ 8)" Re ™ (y)
2 2 (al— 26%)(1 — a2b~%) " 4, cos (2t / ) Re /¥ ()
0% = — 201 (o2 — 2b%) A, cos (2t / 8 Im /U ()
0¥ =~ 2pa1 (a® — 2b%) A, cos@ (2t / 6)” Im 2 (y)
T~ —4pba VT —a%a 4, cos g (2at/ 8)"* Re 1V ()
G = pb (1 — atb7) 7 (a2 — 2b%)2 4, cosp (2at/ 8) Re f* ()
o) =O0(1), T =~paV 1T —a4,sine (2ut/8)" Re f¥ (y)

(4.10)

r=at+ dcosy, z=20siny,
where the functions f(l) () and f(z) (V) are the same as in (3.7).
Employing these expressions, we can obtain the following relation-

ship from the condition (1.6):

| 1

o e e
0 (4.11)

+ V1= a%?*sin?p)dp = C

It can thus be seen that - as was noted when the problem was
formulated - the velocity o must be, strictly speaking, a function
of ¢, since in the general case the integrand depends on ¢ with
constant o. However, there is one value of o - namely,

a? Ye
o= Oy = b 1— m) < (44
& 94 - (4.12)

at which the integrand in (4.11) is constant, since in this case

2 2

the coefficients coincide for cos® ¢ and for sin® ¢. With this

value of a, the crack will have a circular form. The corresponding

16




magnitude of initial stress is obtained from (4.7), (4.11) and
(4.12)
foe2 e
(@) = o7y (a) [T}:‘ 4 (1 - :_13)]
(4.13)
In the general case, performing integration with respect to ¢

in (4.11), we obtain the equation

Fr (s |V T VT (1= B T VI ee (414
which determines a certain effective value of o. It is apparent
that the closer t° is to the value (4.13), the better is the des-
cription provided by this solution for the crack propagation
process.
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